

Максим Рябчицкий, руководитель учебного центра LP

Р21 - «Основы проектирования современных электроустановок на базе оборудования АББ»

Содержание курса

- Используемые термины и определения
- Принципы и особенности расчета электроустановок
- Выбор аппаратов защиты и селективность
- Влияние реактивной мощности и нелинейных искажений на расчет
- Защита от поражения электрическим током, от импульсных перенапряжений, учет электроэнергии

Выбор электрических аппаратов Тепловые режимы электроустановки

Для избежания перегрева токоведущих частей в режиме перегрузки необходимо обеспечить защиту от превышения температры.

Так как температура в установившемся режиме пропорциональная току и времени его протекания, то защита должна реагировать на длительность тока перегрузки.
(согласно ГОСТ Р 50571.5 $\quad I_{b} \leq I_{n} \leq I_{z}$

$$
I_{2} \leq 1,45 I_{z}
$$

Том 2
Раздел 2.3

Выбор электрических аппаратов Тепловые режимы электроустановки по ПУЭ

3.1.11. В сетях, защищаемых от перегрузок (см. 3.1.10), проводники следует выбирать по расчетному току, при этом должно быть обеспечено условие, чтобы по отношению к длительно допустимым токовым нагрузкам, приведенным в таблицах гл. 1.3, аппараты защиты имели соответсвующую кратность.

Выбор электрических аппаратов Организация защиты на предохранителях

-Плавкий предохранитель - аппарат, который вследствие расплавления одного или нескольких специально спроектированных элементов, называемых плавкой вставкой, размыкает цепь, в которую он включен, отключая ток, если этот ток в

ГОСТ Р 50571.9-94 «Электроустановки зданий. Часть 4. Требования по обеспечению безопасности. Применение мер защиты от сверхтоков. течение достаточно продолжительного времени превышает заданное значение (ГОСТ P 50339.0-2003).

Серия OS

Серия XLP

Серия XLBM

Серия XR

Выбор электрических аппаратов Характеристики предохранителей

Первая буква
а = предохранитель для
отключения короткого замыкания
$\mathrm{g}=$ предохранитель общего
назначения
Вторая буква
$\mathrm{G}, \mathrm{L}=$ защита кабелей и линий
$\mathrm{M}=$ защита двигателей
R = защита полупроводников
приборов

■ Защита полупроводниковых приборов $2 R$ gR

■ Защита кабелей и линий
gG, GL

Защита двигателей, аМ

Выбор электрических аппаратов Защита на автоматических выключателях

-Автоматический выключатель - контактный
коммутационный аппарат, способный включать,
проводить и отключать токи при нормальных условиях
в цепи, а также включать, проводить в течение
установленного времени и автоматически отключать
ГОСТ Р 50571.9-94
«Электроустановки
зданий. Часть 4.
Требования по
обеспечению
безопасности.
Применение мер
защиты от
сверхтоков.
токи при установленных анормальных условиях в цепи,
например при коротком замыкании.

Серия System proM Серия Tmax Серия Emax

Выбор электрических аппаратов Характеристики термомагнитных расцепителей

Выбор электрических аппаратов Характеристики электронных расцепителей

-RV - защита от остаточного напряжения
-RP - защита от изменения направления потока мощности
-UF и OF защита от понижения и повышения частоты
-L - защита от перегрузки
-S - защита от КЗ с выдержкой по времени

- - защита от КЗ с мгновенным срабатыванием
-G - защита от замыкания на землю
-D - направленная защита от КЗ
.U - защита от перекоса фаз
.UV - защита понижения
напряжения
-OV - защита от повышения
напряжения

Выбор электрических аппаратов Электронные расцепители АББ

Автоматический выключатель Классификация

Автоматический выключатель Основные технические параметры

```
Параметры в условиях короткого замыкания Для АВ по ГОСТ Р 50030.2 номинальная предельная наибольшая отключающая способность, Іси (кА) - цикл испытаний O-t-CO
номинальная рабочая наибольшая отключающая способность, Ics (кА) цикл испытаний O-t-CO-t-CO
Для АВ по ГОСТ Р 50345
цикл испытаний O-t-O-t-O-t-O-t-O-t-O-t-CO-t-CO-t-CO при пониженном токе КЗ (10/n) и при номинальной отключающей способности, Icn (кА)
Номинальная наибольшая включающая способность, Icm (кА)
```


Выбор электрических аппаратов Автоматические выключатели с выдержкой времени

Выдержка времени необходима для обеспечения временной селективности. Для этого вышестоящий аппарат, должен иметь возможность установки преднамеренной задержки в срабатывании.

Для этого применяют автоматические выключатели категории В.

Для автоматических выключателей категории B нормируется номинальный кратковременно
выдерживаемый ток, Icw (кА).

Выбор электрических аппаратов
 Токоограничивающие автоматические выключатели

Токоограничивающие характеристики достигаются специальной конструкцией контактной системы, которая обеспечивает высокое быстродействие в режиме короткого замыкания.

Выбор электрических аппаратов Характеристики токоограничения

Выбор электрических аппаратов Сравнение способов защиты


```
Защита на предохранителях:
    + надежность
    + естественное согласование характеристик
    + привлекательная стоимость
    - однократное действие
    - отсутствие возможности настройки
Защита на автоматических выключателях
    + различные способы селективности
    + многообразие функций и настроек
    + многократное действие
    - высокая стоимость
```


Выбор электрических аппаратов Защита от электрической дуги

Причиной возникновения электрической дуги может быть повреждение шинных сборок, проникновение в НКУ животных, ошибки персонала.

Arc Guard	System ${ }^{\text {тм }}$ от
компании	АББ,
включает	набор
необходимых датчиков и	
аксессуаров	
необходимых	
быстрого	отключения
НКУ.	

Выбор электрических аппаратов Согласование защитных характеристик

- 1-Характеристика нагрузки (с учетом пусковых режимов)
- 2-Характеристика расцепителя автоматического выключателя
- 3-Тепловая способность электроустановки (кабеля и трансформатора)

Выбор электрических аппаратов Ошибки при выборе защит

- Электроустановка защищена от всех аварийных режимов

не . Отключение нагрузки при номинальных пусковых режимах

Селективность и координация Определения

- Термин «Координация» определяет и характеризует поведение двух и более последовательно расположенных защитных аппаратов, например, автоматических выключателей при аварийных режимах.
- Селективность (избирательность) заключается в такой координации времятоковых характеристик последовательно расположенных выключателей, чтобы в случае повреждения отключался только один выключатель, наиболее близко расположенный к повреждению.

Селективность и координация Цель координации

Цель координации устройств защиты и управления:

- Обеспечение безопасности электроустановки
- Отключение только поврежденной части установки
- Исключение распространения аварии
- Резервирование защит

Селективность и координация Подробная информация

Техподдержка проектов по обеспечению и настройке селективности.

Учебный курс - селективность и настройка автоматических выключателей.

Брошюры «Селективность» и «Таблицы
 координации».

Типы селективности Селективность по току

- Селективность по току основывается на выборе автоматических
выключателей, имеющих различные уставки тока срабатывания (автоматические выключатели на стороне питания имеют более высокие уставки).

Типы селективности Пример селективности по току

Типы селективности Селективность по времени

- Селективность по времени достигается путем выбора выключателей с преднамеренной задержкой времени срабатывания (категория B), ближайший к источнику питания QF1, имеет большее время срабатывания).

Типы селективности
 Пример селективности по времени

Типы селективности
 Энергетическая селективность

- Энергетическая селективность реализуется при использовании токоограничивающих автоматических выключателей

Типы селективности Зонная селективность

- Зонная (или логическая) селективность реализуется путем обмена данными между аппаратами защиты, которые при обнаружении превышения заданного порога, позволяют правильно отключить неисправность и отключить только ту зону, которая затронута аварией.

Типы селективности
 Пример определения селективности

Типы селективности
 Пример определения селективности

ACB - MCCB при 415 B

Типы селективности
 Пример определения селективности

Типы селективности Пример определения селективности

-Согласно таблице № 1 E2N1250 и E5P400 селективны до 55 кА (меньшая отключаящая способность комбинации)
-Согласно таблице № 2 T5H400 и T1N190 In125 имеют полную селективность, до отключающей способности T1N (36 кА)

- E2N1250 и T5H400 имеют временную селективность, а T5H400 и Е1T160 энгергетическую селективность.

Типы селективности
 Пример определения селективности

Времятоковые кривые срабатывания

Селективность модульных аппаратов Серия S750DR

S750DR предлагает полную селективность с нижестоящими автоматическими выключателями за счет уникального принципа действия: энергетическая селективность (за счет эффекта токоограничения) обеспечивающего дополнительное токоограничение в случае к.з. в конечной цепи.
-Характеристики:

- ном. ток16... 63 А (80 и 100 А в 2013!!!)
- ном.напряжение 230/400 В
- число полюсов1... 4
- хар-ки расцепления E, K
- откл.способность 25 кА

Селективность модульных аппаратов Серия S750DR

- Е-характеристика для стандартных применений
- K-характеристика для нагрузок с высокими пусковыми токами
- I1/I2 близки к номиналу для обеспечения лучшей защиты кабеля
- Задержка срабатывания от 10 мс

Селективность модульных аппаратов Серия S750DR

Селективность модульных аппаратов Серия S750DR

Координация

Координация
Пример координации

Селективность

Указание настроек на схемах

Селективность

Таблица настроек

Уставки защит атоматических выключателей

Автоматический вьключатель	Функция защиты	Обозначение на апाпарате		Значение уставки на аппарате	Абсолютное значение
QF1 (Вводной) T5N 630 PR222DS-LSI	Защита от тока перегрузки с обратнозависимой длительной задержкой	L	I1	0.8	504 A
			t1	3 s	$\begin{gathered} 3 \mathrm{c} \\ \left(\text { при токе } 6 \mathrm{I}_{1}\right) \end{gathered}$
	Защита от тока КЗ с обратнозависимой кратковременной задержкой	S	I2	9.4	5922 A
			t2	0.1	$\begin{gathered} 0,1 \text { с } \\ \text { (при токе 8In) } \end{gathered}$
				$\square{ }^{\text {или }}$	$\mathrm{I}^{2} \mathrm{t}=$ const
	Защита от тока КЗ с мгновенным срабатыванием	I	I3	9.5	5985 A

Выбор электрических аппаратов Критерии выбора

- Выбор AB по номинальному току
- Выбор по чувствительности характеристики расцепителя
- Выбор по отключающей способности
- Проверка селективности
- Выбор с учетом специфики защищаемой цепи
- Выбор АВ и аксессуаров для обеспечения функциональных возможностей (мониторинг, дистанционное управление и т.д.)
- Определение настроек расцепителя

Выбор электрических аппаратов Критерии выбора

Специфика различных нагрузок Осветительные сети

Для ламп накаливания характерен высокий пиковый ток при включении, связанный с разогревом нити до рабочего состояния.

Амплитуда тока составляет 15-20 крат к номинальному при длительности 4-5 мс.
Для контакторов категория применения AC5b

$=$ ABB
Том 2
Раздел 3.1

Специфика различных нагрузок Осветительные сети

Люминесцентные лампы характеризуются наличием токоограничивающего дросселя и пускорегулирующего устройства (ПРА). ПРА могут быть электрическими и электронными. Для снижения токов высших гармоник ПРА могут быть снабжены корректором коэффициента мощности или конденсатором.

Для контакторов категория применения AC5a

Том 2
Раздел 3.1

Тип лампы	Пиковый ток		Пусковой ток	Время пуска
Лампы накаливания		15In	-	-
Галогенные лампы		15In	-	-
Люминесцентные	Без конденсатор	a	$21 n$	10 c
лампы	Сконденсатором	M 20In		$1 \div 6 \mathrm{c}$
Разрядные лампы	Без конденсатор	pa	2 n	$2 \div 8$ мин
высокой интенсивности	Сконденсатором	M 20In	$21 n$	$2 \div 8$ мин

Специфика различных нагрузок Генератор

Специфика различных нагрузок Асинхронный двигатель

Для защиты и управленяи асинхронным двигателем применяются пускатели (контактор + тепловое реле) и автоматические выключатели (автоматические выключатели для защиты двигателей не имеют теплового расцепителя).

Тип тока	Категории применения	Типовые применения
Переменный ток АС	AC-2	Асинхронные двигатели с контактными кольцами: пуск, отключение
	AC-3	Двигатели с короткозамкнутым ротором: пуск, отключение в процессе работы(1)
	AC-4	Двигатели с короткозамкнутым ротором: пуск, торможение противовключением, толчковый режим

$-\mathrm{ABB}$
Том 2
Раздел 3.3

Класс расцепления Время срабатывания в секундах (Tp)

10 A	$2<\operatorname{Tp} \leq 10$
10	$4<\operatorname{Tp} \leq 10$
20	$6<\operatorname{Tp} \leq 20$
30	$9<\operatorname{Tp} \leq 30$

Специфика различных нагрузок Трансформатор

Выбор аппаратов защиты для трансформатора определяется кривой пускового тока трансформатора и точкой предельной тепловой нагрузки.

Этапы проектирования Блок схема этапов

Этапы проектирования Блок схема этапов

Программа DOC2 Основные возможности

- Расчет
. Сети CH/HH
. Радиальные и смешанные сети
. Вычисления
- Напряжения и токи в любой точке сети
-Максимальный и минимальный токи КЗ
-Подбор сечения кабеля и выбор защитного оборудования

Программа DOC 2
 Идеальный инструмент для проектирования

Файл Правка ОбъектыНН ОбъектыСН Инструменты Вид Щит Помощь

Cormand <gredit>:
Command <circuit>:

Программа DOC 2
 Идеальный инструмент для проектирования

Программа DOC 2
 Идеальный инструмент для проектирования

Программа DOC 2 Идеальный инструмент для проектирования

Файл Правка Объекты НН ОбъектыСН Инструменты Вид Щит Помощь

second point/<>: panstop
Command <_dpan>:

Программа DOC 2 Идеальный инструмент для проектирования

Curves

Проверка селективности и настройка защиты

[^0]
Программа DOC 2 Настройка автоматических выключателей

Каталог типовых решений ГРЩ Структура альбома

- Однолинейная схема
- Габаритный чертеж
- Изометрия
- 3D модель (на диске)
- Основные данные (габариты, вес, технические характеристики)
- Файлы AutoCad
- Спецификации
- Чертежи узлов и сборных шин
- Монтажные инструкции

Обзор типовых решений на ток 4000 A Вводная панель

- Номинальный ток 4000 A
- Вводной аппарат Emax E4 (выкатной)
- Подвод кабелем снизу
- Трансформаторы тока
- Пластронов нет
- TN-C-S / TN-C / TN-S
- IP54* / IP31
- Сборные шины
$4 \times(60 \times 10)$ мм 2 (на 1 фазу)

Обзор типовых решений на ток 4000 A Вводная панель (шины сверху)

Обзор типовых решений на ток 4000 A Вводная панель (шины снизу)

Обзор типовых решений на ток 4000 A Секционная панель

- Номинальный ток 4000 A
- Секционный аппарат Emax E4 (выкатной)
- Трансформаторы тока
- Пластронов нет
- TN-C-S / TN-C / TN-S
- IP54* / IP31
- Сборные шины
$4 \times(60 \times 10)$ мм 2 (на 1 фазу)

Обзор типовых решений на ток 4000 A Секционная панель

Обзор типовых решений на ток 4000 A Панель перехода

- Номинальный ток 4000 A
-Пластронов нет
. TN-C-S / TN-C / TN-S
- IP54*
- Сборные шины
$4 \times(60 \times 10)$ мм 2 (на 1 фазу)

Обзор типовых решений на ток 4000 A Панель перехода

Обзор типовых решений на ток 4000 A Распределительная панель

- Номинальный ток 2500 A
- Аппарат Emax E3
(выкатной)
- Трансформаторы тока
- Пластронов нет
- TN-C-S / TN-C / TN-S
- IP54* / IP31
- Сборные шины
$4 x(60 \times 10)$ мм² 2 (на 1 фазу)

Обзор типовых решений на ток 4000 A Распределительная панель (шины снизу)

Обзор типовых решений на ток 4000 A Распределительная панель (шины сверху)

Конструкция НКУ Функции

- Основные функции оболочки:
- обеспечить защиту персонала от поражения электрическим током и других опасных факторов;
- обеспечить защиту электротехнического оборудования от негативного влияния окружающей среды.
- Дополнительные функции оболочки:
- механическое крепление токоведущих частей и аппаратов;
- обеспечение теплового режима НКУ;
- секционирование;
- удобство доступа для эксплуатации;
- прокладка дополнительных цепей;
- обеспечение защитного заземления;
- удобная маркировка;
- возможность выноса элементов управления и контроля.

Конструкция НКУ Функции

На этапе проектирования необходимо определить основные требования к конструкции НКУ, таким как:

- габаритные размеры;
- степень защиты;
- секционирование;
- дополнительные требования.

Это необходимо для стоимостной оценки проекта и расположения НКУ в выделенном помещении.

Конструктивные детали уточняются на этапе конструирования НКУ.

Выбор электрических аппаратов Принцип расчета тепловых режимов

Различают установившийся тепловой режим, переходный тепловой режим, повторно-кратковременный тепловой режим, адиабатический тепловой режим.

Установившийся
$P_{\text {быI }}=I^{2} \frac{\rho l}{S}=P_{\text {oms }}=k_{T} S_{o x i}\left(\vartheta-\vartheta_{\text {oкp }}\right)$

Повторно-кратковременный

$P_{\text {выд }}>P_{\text {отв }}$

Адиабатный
Переходный

$$
\begin{aligned}
& P_{\text {отв }}=0 \\
& P_{\text {выд }}(1+\alpha \vartheta) d t=C d \vartheta
\end{aligned}
$$

Выбор электрических аппаратов Нагрев в режиме КЗ

Расчет режима КЗ (адиабатный) отличается небольшой длительностью, в этом случае можно пренебречь теплопередачей в окружающую среду, т.е. Вся тепловая мощность расходуется на рост температуры токоведущей части.

Для расчета используют кривые адиабатного нагрева для конкретного материала проводника.

$j^{2} t$

Выбор электрических аппаратов Термическая стойкость

Термическая стойкость - способность токоведущих частей выдерживать без повреждений термическое воздейстиве протекающих по токоведущим частям токов заданной длительности.

При этом температура при КЗ в силу кратковременности процессов может значительно превышать длительно допустимую, в течение времени КЗ не происходит существенных изменений изоляции.

ГОСТ 30323-95 Короткие замыкания в электроустановках. Методы расчета электродинамического и термического действия тока короткого замыкания.

шины медные $-300^{\circ} \mathrm{C}$
шины аллюминевые $-200^{\circ} \mathrm{C}$
кабели с ПВХ изоляцией $-160{ }^{\circ} \mathrm{C}$
кабели с резиновой изоляцией $-150{ }^{\circ} \mathrm{C}$

Выбор электрических аппаратов Сквозная энергия

Оценка термического воздействия на токоведущие части может производиться сравнением удельной сквозной энергии КЗ с значеним энергии, которую токоведущая часть выдерживает без повреждения.

Количественно принято сравнивать интеграл Джоуля защитного устройства с аналогичным показателем для токоведущих частей.

$$
I^{2} t \leq k^{2} S^{2}
$$

где $1^{2} t\left[\kappa^{2} \mathrm{c}^{2}\right]$ - удельная сквозная энергия защитного устройства (для токоограничивающих выключателей и

Том 2
Раздел 2.4 предохранителей это значение является каталожным);

S - [мм²] поперечное сечение проводника;
k - коэффициент зависящий от материала изоляции и проводника (определяется по таблицам).

Выбор электрических аппаратов Электродинамические воздействия

Между проводниками с током возникает механическое взаимодействие описываемое законом Ампера (открыт Андре Мари Ампером в 1820 г. для постоянных токов).

Каждый ток создает магнитное поле, взаимодействие полей вызывает механическое усилие на проводники (параллельные проводники с сонаправленным токами притягиваются, с разнонаправленными отталкиваются).

Например, при токе 50 кА на проводники расположенные в 2 см. друг от друга действует сила эквивалентная 2500 кг.

$$
F=\frac{\mu_{0}}{4 \pi} \frac{2 I_{1} I_{2}}{r}
$$

Выбор электрических аппаратов Расчет электродинамических усилий

При трехфазном КЗ:

$$
F_{\max }^{3}=\sqrt{3} \cdot 10^{-7} \frac{l}{a}\left(i_{y d}^{(3)}\right)^{2} K_{\phi} K_{p a c n}
$$

$\mathrm{K}_{\text {расп }}$ - коэффициент зависящий от расположения шин.

Выбор оболочки Тепловой режим НКУ

- При выборе оболочки инженеры должны решить ряд противоречий
- Высокие значения IP необходимы для защиты оборудования от влияния окружающей среды
- Предпочтительнее компактный конструктив с плотным размещением аппаратов
- Секционирование необходимо для разделения
функциональных блоков
- Секционирование ухудшает теплообмен

Секционирование Формы секционирования

Основной признак	Другие признаки	Форма
Разделение отсутствует		Форма 1
Разделение сборных шин функциональных блоков	Зажимы для внешних проводников необязательно отгораживать от сборных шин	Форма 2a
	Зажимы для внешних проводников отгорожены от сборных шин	Форма 26
Внутреннее разделение сборных шин и функциональных блоков, а также функциональных блоков друг от друга, за исключением их зажимов от внешних проводников	Зажимыдля внешних проводников необязательно отгораживать от сборных шин	Форма 3а
	Зажимыдля внешних проводников отгорожены от сборных шин	Форма 3б
Внутреннее разделение сборных шин от функциональных блоков и всех функциональных блоков друг от друга, включая их выходные зажимы	Зажимы для внешних проводников в той же секции, что и соответствующий функциональный блок	Форма 4а
	Зажимы для внешних проводников, но в той секции, что и соответствующий функциональный блок, однако в отдельном, изолированном оболочкой помещении или отсеке	Форма 4б

Принудительное охлаждение Принципы размещения

Для снижения тепловой нагрузки могут применяться устройства принудительного охлаждения (вентиляторы и теплообменники), а для снижения вероятности образования конденсата нагреватели.

Техническая поддержка Виды технической поддержки

По электрощитовому оборудованию

- Разработка чертежей внешнего вида
- Разработка габаритных чертежей
- Разработка чертежей размещения электрощитового оборудования
- Составление спецификаций оборудования
- Подготовка предварительных сметных оценок
- В
- Проведение тепловых расчётов НКУ

Техническая поддержка Виды технической поддержки

По схемам (анализ проектной документации)

- Проверка правильности выбора оборудования
- Анализ селективности автоматических

выключателей

- Анализ возможности автоматизации
- Предоставление или разработка схем ABP

Техническая поддержка Виды технической поддержки

На предпроектной стадии

- Подготовка требований для включения в задания на проектирование
\square Разработка концепции энергоэффективности
- Разработка концепции автоматизации
- Предварительные предпроектные сметные оценки

Техническая поддержка Разработка чертежей внешнего вида

Техническая поддержка Разработка габаритных чертежей

Техническая поддержка Разработка чертежей размещения

Техническая поддержка Составление спецификаций

Техническая поддержка Разработка чертежей внешнего вида

Техническая поддержка Тепловые расчеты

Рис 2. График распределения температурь по высоте икафа с учётом изменений е констружции
Как можно видеть из графика, на высоте расположения верхнего аппарата 1900 мм превышение его температуры составляет $66^{\circ} \mathrm{C}$, такнм образом его фактическая температура равна $35^{\circ} \mathrm{C}+66^{\circ} \mathrm{C}=101^{\circ} \mathrm{C}$.

Такое значение температуры окружающей среды является недопустимым, т.к. превышает $70^{\circ} \mathrm{C}$, следовательно, предложенное компоновочное решение реализовать невозможно.

В качестве конструктивных мер по улучшению теплового режима предлагается установка двух фильтров RZA400 с целью обеспечения свободной циркуляции воздуха

Техническая поддержка Построение карт селективности и проверка

E3N 3200

Функция	Настройка	Значение
Зашита от перегрузки L	Уставка по току I1	0.88 x In
	Уставка по времени t 1	3 c
Защита от КЗЗ с задержкой по времени \mathbf{S}	Форма кривой S	$\mathrm{I}^{2} \mathrm{t}$
	Уставка по току I2	$4 \times \mathrm{In}$
	Уставка по времени $\mathbf{t} 2$	0,3c
Защита от КЗЗ с мгновенным срабатыванием I	Уставка по току I3	ОТКЛ.

Power and productivity for a better world ${ }^{\text {M }}$

[^0]: Чсловия обеспечения защиты

 QF1.1, T... WC1.1 Косвенное прикосновение - 1 сраа (0.1) < 1 kmuHL -PE (1.9)
 QF1.2, E....QF1.1, T... Селективность -ток $1 s$ гаранируется только до $36.0[\mathrm{kA}]\rangle=$ требуемое значение (29.9[kA])

 Косвенное прикосновение - Ісраб (1.2) < $\mathrm{kmuнLL}$-PE (1.7)
 QF1.6. \times. QF1.8.T... Селективность -ток 1 s гарантируется только до $36.0[\mathrm{kA}]>=$ требуемое значение $[29.9[\mathrm{kA}])$
 (peryemoe sнычние (29.9[kA]])

